A Preconditioned Conjugate Gradient Method for Nonselfadjoint or Indefinite Orthogonal Spline Collocation Problems

نویسندگان

  • Rakhim Aitbayev
  • Bernard Bialecki
چکیده

We study the computation of the orthogonal spline collocation solution of a linear Dirichlet boundary value problem with a nonselfadjoint or an indefinite operator of the form Lu = ∑ aij(x)uxixj + ∑ bi(x)uxi + c(x)u. We apply a preconditioned conjugate gradient method to the normal system of collocation equations with a preconditioner associated with a separable operator, and prove that the resulting algorithm has a convergence rate independent of the partition step size. We solve a problem with the preconditioner using an efficient direct matrix decomposition algorithm. On a uniform N×N partition, the cost of the algorithm for computing the collocation solution within a tolerance is O(N2 lnN | ln |).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel Preconditioners for Non-self-adjoint or Indefinite Orthogonal Spline Collocation Problems

Efficient numerical algorithms are developed and analyzed that implement symmetric multilevel preconditioners for the solution of an orthogonal spline collocation (OSC) discretization of a Dirichlet boundary value problem with a non–self-adjoint or an indefinite operator. The OSC solution is sought in the Hermite space of piecewise bicubic polynomials. It is proved that the proposed additive an...

متن کامل

Convergence and Instability in PCG

Bordered almost block diagonal systems arise from discretizing a linearized rst-order system of n ordinary diierential equations in a two-point boundary value problem with non-separated boundary conditions. The discretization may use spline collocation, nite diierences, or multiple shooting. After internal condensation, if necessary, the bordered almost block diagonal system reduces to a standa...

متن کامل

An Additive Schwarz Algorithm for Piecewise Hermite Bicubic

An overlapping domain decomposition, additive Schwarz, conjugate gradient method is presented for the solution of the linear systems which arise when orthogonal spline collocation with piecewise Hermite bicu-bics is applied to the Dirichlet problem for Poisson's equation on a rectangle .

متن کامل

Iterative Parallel Methods for Boundary Value Problems

A bordered almost block diagonal system (BABD) results from discretizing and linearizing ordinary diierential equation (ODE) boundary value problems (BVPs) with non-separated boundary conditions (BCs) by either spline collocation, nite diierences, or multiple shooting. After internal condensation, if necessary, this BABD system reduces to a standard-nite diierence BABD structure. This system ca...

متن کامل

Multigrid and Krylov Subspace Methods for the Discrete Stokes Equations

Discretization of the Stokes equations produces a symmetric indefinite system of linear equations. For stable discretizatiom a variety of numerical methods have been proposed that have rates of convergence independent of the mesh size used in the dkretization. In this paper we compare the performance of four such methods, namely variants of the Uzawa, preconditioned conjugate gradient, precondi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2003